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Abstract

We studied some structural properties of an L.A-semihypergroup and
generalized/extended the theory of an L.A-semigroup in terms of their one-
sided ideals. We characterized an intra-regular class of an L.A- semihypergroup
by using one-sided hyperideals and shown that an £A- semihypergroup is intra-

regular, if and only if every left and right hyperideal commute with each other.

1. Introduction

A left almost semigroup (LA-semigroup) is a groupoid S, whose

elements satisfy the following left invertive law:
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(ab)e = (cb)a, VY a,b,ceS.

This concept was first given by Kazim and Naseeruddin in 1972 [13].
In an LA-semigroup, the medial law [13] (ab)(cd) = (ac)(bd) holds,
Va,bc,deS An LA-semigroup may or may not contain a left
identity. The left identity of an L.A- semigroup allow us to introduce the
inverses of elements in an LA- semigroup. If an £.A- semigroup contains
a left identity, then it is unique [17]. In an LA- semigroup S with left
identity, the paramedial law (ab)(cd) = (dc)(ba) holds, V a, b, ¢, d € S.

By using medial law with left identity, we get a(bc) = b(ac), V a, b, ¢ € S.

An LA- semigroup is a non-associative and non-commutative algebraic

structure mid way between a groupoid and a commutative semigroup.
This structure is closely related to a commutative semigroup; indeed if an
LA- semigroup contains a right identity, then it becomes a commutative
semigroup [17]. The connection between a commutative inverse semigroup
and an LA- semigroup was established by Yousafzai et al. in [5] as follows:
A commutative inverse semigroup (S,.) becomes an LA-semigroup
(S, *) under a *b = ba'r !,V a b reS. An LA-semigroup S with a

left identity becomes a semigroup under the binary operation "o,

defined as follows: x o, y = (xe)y, V x, y € S [6].

There are lot of results which have been added to the theory of an

LA- semigroup by Mushtaq, Kamran, Holgate, Jezek, Protic, Madad,
Yousafzai and many other researchers. An LA-semigroup is a

generalization of a semigroup [17] and it has vast applications in

semigroups, as well as in other branches of mathematics.

Hyperstructure theory was introduced in 1934, when Marty [16]
defined hypergroups, began to analyze their properties and applied them
to groups. In the following decades and nowadays, a number of different

hyperstructures are widely studied from the theoretical point of view and
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for their applications to many subjects of pure and applied mathematics
by many mathematicians. Nowadays, hyperstructures have a lot of
applications to several domains of mathematics and computer science
and they are studied in many countries of the world. In a classical
algebraic structure, the composition of two elements is an element, while
in an algebraic hyperstructure, the composition of two elements is a set.
A lot of papers and several books have been written on hyperstructure
theory, see [2, 21]. Many authors studied different aspects of
semihypergroups, for instance, Bonansinga and Corsini [1]; Davvaz [3];
Drbohlav et al. [4]; Fasino and Freni [7]; Gutan [8]; Hasankhani [9];
Hedayati [10]; Hila et al. [12]; Leoreanu [15]; and Onipchuk [20].

Recently, Hila and Dine [11] introduced the notion of
LA- semihypergroups. They investigated several properties of
hyperideals of L£.A- semihypergroup and defined the topological space and
study the topological structure of L.A-semihypergroups by using

hyperideal theory. In [22], Yaqoob et al. have characterized intra-regular

LA- semihypergroups by using the properties of their left and right

hyperideals, and investigated some useful conditions for an

L A-semihypergroup to become an intra-regular £A- semihypergroup.

2. Preliminaries, Examples and Some

Important Facts

In this section, we recall certain definitions and results needed for
our purpose.
A map o: HxH — P*(H) is called hyperoperation or join operation

on the set H, where M is a non-empty set and P*(H) = P(H)\ {0}

denotes the set of all non-empty subsets of H. A hypergroupoid is a set
‘H together with a (binary) hyperoperation.
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If A and B be two non-empty subsets of H, then we denote

AoB = U aob, aoA={a}oA, and ao B = {a}oB.
acA,beB

A hypergroupoid (H, o) is called an LA-semihypergroup [11] if,
Y x, v,z e H:
(xoy)oz=(z0y)0x.
The law is called a left invertive law.
Every LA-semihypergroup satisfies the following law:
(xoy)elzow)=(xoz)o(yow),
for all w, x, y, z € H. This law is known as medial law (cf. [11]).

Definition 1. Let H be an LA-semihypergroup [22], then an

element e € H is called

(1) left identity (resp., pure left identity) if, Ya e H,aceoa

(resp., a = eca);

(1) right identity (resp., pure right identity) if, YV a € H,a e ace

(resp., a = aoe);

(ii1) identity (resp., pure identity) if, Vae H,aeeocallaoce

(resp., a =ecafNaoce).

An LA- semihypergroup (H, o) with pure left identity e satisfy the
following laws [22], V w, x, v, z € H.

(xoy)o(zow)=weoz)o(yox),
called a paramedial law, and

xo(yoz)=yo(xez)
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Example 1 ([22)). Let H = {1, 2, 3, 4, 5} with the binary hyperoperation
defined below:

o |1 2 3 4 5
1|1 1 1 1 1
2 |1 {35 3 (1,4 {3,5
31 3 3 {1, 4 3
41 L4 {14 4 {1, 4
51 {25 3 (1,4 {25

Clearly ‘H is not a semihypergroup because (5¢5)02 = {2, 3, 5} # {2, 5}
=50(502). Thus H is an LA- semihypergroup because the elements of

‘H satisfies the left invertive law.

It is a well known fact that if an LA-semigroup contains a right
identity, then it becomes an identity, and an L.A- semigroup becomes a

commutative semigroup with an identity. But on the other hand, the

behaviour of an LA- semihypergroup is much different as compared to an
LA-semigroup. It is very interesting and important to note that if an
LA-semihypergroup H contains a right identity, then it need not to be a

left identity, which can be seen from the following example:

Example 2. Let H = {1, 2, 3} with the binary hyperoperation defined

below:
N
1 (1,3 3 2,3
2 (2,3 3 3

3 {2, 3} {2, 3} {2, 3}
Clearly H is not a semihypergroup because (202)03 = {2, 3} # 3
=20(203). Thus H is an LA-semihypergroup because the elements of

‘H satisfies the left invertive law. One can easily observe that 1 is a right

identity but not a left identity.
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Now, we are going to present another unusual behaviour of an
LA-semihypergroup, which is strictly restricted in the structure of an

LA-semigroup.

Example 3. Let H = {1, 2, 3} with the binary hyperoperation defined
below:

° ‘ 1 2 3

1 {1, 3} 2 {2, 38}
2 {2, 3 {2, 3 {2, 3
3 {2, 3} {2, 3} {2, 3}
Clearly H is an LA-semihypergroup because the elements of H

satisfies the left invertive law. It is easy to see that 1 is a right identity

and as well as a left identity of H, that is 1 is an identity of H, but
H is neither commutative [lo2 =2 = {2, 3} = 201] nor associative
[1o1)o2=1{2,8} #2=10(102)].

However, if an LA- semihypergroup contains a pure right identity,
then it becomes a commutative semihypergroup with a pure identity [22].

Thus, we have concluded that the structural properties of an

LA-semihypergroup are much different than that of an L.A-semigroup

due to the following major remarks:

Remark 1. The right identity of an L£A-semihypergroup need not to
be a left identity in general.

Remark 2. An LA-semihypergroup may have a left identity or a
right identity or an identity.

Remark 3. An L.A-semihypergroup with a right identity need not to

be associative.

It is easy to see that if S is an intra-regular L.A-semihypergroup,

then S = S o S holds [22].
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Definition 2. A non-empty subset A of an LA-semihypergroup S
called left (right) hyperideal of S, if and only if Sc A c A (48 c A)
and is called two-sided hyperideal or hyperideal of S, if and only if it is
both left and right hyperideal of S.

Definition 3. A non-empty subset A of an LA-semihypergroup S

called semiprime, if and only if a?=acacAd=acA
3. Main Results

By R and £, we will mean right and left (hyper-) ideals of an
LA-semigroup (LA-semihypergroup) S, respectively, such that R will

be semiprime.

Lemma 1. An LA-semihypergroup S with pure left identity is intra-
regular, if and only if RN L = R o L.

Proof. (=): Suppose that an LA-semihypergroup S with pure left

identity is an intra-regular. Let R and £ be any right and left
hyperideals of S, respectively, and let a € S, then there exist x, y € S

such that @ = (x o a?) o y. Now let a® € R, then
a=(xoa®)oy=(ecx)o(aca)ey=(aca)e(xoe)oy
=(ye(xee)e(aca)=(aca)e(xee)oy)eRoSc R

Thus R is semiprime. It is easy to see that Ro L < R L. Since

a® eazoS, as
2 2 _ - - q?
a“eSoa*=(So8)o(aca)=(aca)o(Se8)=a“-S8,

and also a® o S is a right hyperideal of S, therefore by given assumption

aea’®ss. Let a € RN L, then
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aca’oS=(aca)o(SoS)=(aoS)o(@ao8)=(Soa)e(S-a)
=(§eS)ea)e(Sca)=(acS)eS)e(Sea)
c(ReS)eS)e(SeL)cs RoL,

which shows that R (1 £ = R o £, where R and £ are any right and left

hyperideals of S, respectively, such that R is semiprime.

(«<) : Let every right hyperideal R be semiprime and £ be any left
hyperideal of an LA-semihypergroup S with pure left identity such that
RNL=RoL Since a?cS and Soa are any right and left

hyperideals of S, respectively, then it is easy to see that a € a? S and

a € S o a, therefore,
aca?eSNSca=(a208)o(Soa)=(aca)o(SeS))o(Soa)
=(Se8)elaca)(Sca)c (Soa?)es,

that is, @ = (xca?)oy for some x, y € S, therefore S is an intra-

regular. O

Corollary 1. An LA-semigroup S with left identity is intra-regular,
ifand only if RN L = RL.

Lemma 2 ([22]). A non-empty subset A of an intra-regular
LA-semihypergroup S with pure left identity is a left hyperideal of S, if
and only if it is a right hyperideal of S.

Lemma 3. An LA-semihypergroup S with pure left identity is intra-
regular, ifand only if LONR = Lo R.

Proof. (=) can be followed by using Lemmas 1 and 2. (<) is

straightforward. O
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Corollary 2. An LA-semigroup S with left identity is intra-regular,
ifandonlyif LOAR = Lo R.

From above discussion, we get the following immediate results:

Theorem 1. An LA-semihypergroup S with pure left identity is
intra-regular, if and only if R o L = Lo R.

Corollary 3. An LA-semigroup S with left identity is intra-regular,
if and only if RL = LR.

Definition 4. A non-empty subset A of an LA-semihypergroup S
called idempotent, if and only if A = A% = Ao A.

Corollary 4. An LA-semihypergroup S with pure left identity is
intra-regular, if and only if every left hyperideal of S is idempotent.

Corollary 5. An LA-semihypergroup S with pure left identity is

intra-regular, if and only if every semiprime right hyperideal of S is

idempotent.

Corollary 6. An LA-semigroup S with left identity is intra-regular,

if and only if every left ideal of S is idempotent.

Corollary 7. An LA-semigroup S with left identity is intra-regular,

if and only if every semiprime right ideal of S is idempotent.
Theorem 2. An LA-semihypergroup S with pure left identity is
intra-regular, if and only if £ = cs.

Proof. (=): Let S be an intra-regular LA-semihypergroup with

pure left identity and £ be any left hyperideal of S. Then by using

Corollary 4, we have

L3=r2cL=LoLcSoLcCL.
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Now let a € £, then by using Lemmas 1 and 2, a?o8 is a left

hyperideal of S such that a e a? o S, therefore,
aca’?eS=(aca)eS=(Soa)eac (So(a?08))oa
=(a2o(So8))ca=(aca)eS)oa=((Sca)oa)oa

c(SoL)oL)oL c(LoL)oL c LB,
which is what we set out to prove.

(<): Let £ be any left hyperideal of an LA-semihypergroup S

with pure left identity such that £ = £3. Since Soa is left hyperideals

of S and a € S o a, therefore,
aeSca=(Sca)o(Sca)e(Sca)=(SoS)o(aca)e(Sca)c (Soa?)os,
that is, a = (xaz2 )y for some x, y € S, therefore S is an intra-regular. O]

Theorem 3. For an LA-semihypergroup S with pure left identity,

the following conditions are equivalent:

(1) S is an intra-regular.
(i) £ = £, wherei =1, ..., n.

Proof. It can be easily followed by generalizing the proof of
Theorem 2. 0

From the left-right dual of Theorem 3, we have the following
theorem:

Theorem 4. For an LA-semihypergroup S with pure left identity,

the following conditions are equivalent:

(1) S is an intra-regular.

Gi) R = R, wherei =1, ..., n.
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Definition 5. An LA-semihypergroup is called left (right) simple, if

and only if it has no proper left (right) hyperideal and is called simple, if
and only if it has no proper two-sided hyperideal.

Note that if an LA-semihypergroup S contains a left identity, then
S =82,

Theorem 5. The following conditions are equivalent for an

LA-semihypergroup S with pure left identity:
(1) aoS =S8, forsome a € S.
(i) Soca =S, for some a € S.
(1) S is simple.
(iv) Any two-sided hyperideal A of S acts as an identity of S.

(v) S is an intra-regular.

Proof. (i) = (i1) : Let S be an LA-semihypergroup with pure left

identity and assume that a © S = S holds for some a € S, then
S=808=(@08)oS=(So8)oca=S8oa.

(1) = (@11) : Let S be an LA-semihypergroup with pure left identity
such that a oS = S holds for some a € S. Suppose that S is not left
simple and let £ be a proper left hyperideal of S, then

SoLclLcS=808S=(Sca)eS=(ScS)o(eca)os

—((@ce)e(S28)o8 = ((@se)o8)e(So8)

(See)ea)o(Se8)=(SeS)e(ac(See)

ao((8§o8)o(Soe))ca-S,

implies that sol = aot, forsome a,s,t €S and [ € £. Since sol e L,
therefore aot e £, but aoct € aS. Thus a-S c £ and therefore, we

have
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S=a-Sc/”

implies that S = £, which contradicts the given assumption. Thus S 1is
left simple and similarly we can show that S is right simple, which

shows that S is simple.
(111) = (@v) : Let S be a simple LA-semihypergroup with pure left
identity and let A be any two-sided hyperideal of S, then A = S.

Therefore, we have
AcS =885 =80 A.

(iv) = (v) : Let S be an LA-semihypergroup with pure left identity
such that A oS = S = S o A holds for any two-sided hyperideal A of S.

Since a0 S is a right hyperideal of S and we know that every right
hyperideal of S with pure left identity is two-sided hyperideal of S.

Thus, a? o S is two-sided hyperideal of S such that (a208)oS =8 =
So(a?08). Let a € S, then
aeS=(a?08)oS=((aca)o(So8))eS
=(Se8)e(aca)eS=(Sea’)es,
thatis, a = (x o a2)o y for some x, y € S, therefore S is fully regular.

(v) = () : Let S be an intra-regular LA-semihypergroup with pure

left identity and let a € S, then there exist x, y € S such that

a = (x0a?)oy. Thus,
a=(xea®)oy=(eox)o(aca)ey=(aca)e(eox)ey

=(eolecx))e(@aca)=ac(yoleox))ca)eacs,

which shows that S €« Soca and Soca < S 1is obvious. Thus Sca =S

holds for some a € S. |
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Corollary 8. The following conditions are equivalent for an

LA-semihypergroup S with pure left identity:
1) aoS =38, forsome a € S.
(1)) Soa =S8, for some a € S.
(1) S is right simple.
(iv) Any two-sided hyperideal A of S acts as an identity of S.

(v) S is an intra-regular.

Theorem 6. The following conditions are equivalent for an

LA-semihypergroup S with pure left identity:

(1) S is an intra-regular.

(1)) Soca=8=a-S8, forsome a € S.

Proof. It can be easily followed by using Theorem 5. O

4. Conclusion

The main aim of this paper is to provide a platform for characterizing

LA-semihypergroups and ordered L.A-semihypergroups in terms of

fuzzy hyperideals using pure left (right) identity.
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